Oversampling of wavelet frames for real dilations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oversampling of wavelet frames for real dilations

We generalize the Second Oversampling Theorem for wavelet frames and dual wavelet frames from the setting of integer dilations to real dilations. We also study the relationship between dilation matrix oversampling of semi-orthogonal Parseval wavelet frames and the additional shift invariance gain of the core subspace.

متن کامل

On the Oversampling of Affine Wavelet Frames

Abstract. The properties of oversampled affine frames are considered here with two main goals in mind. The first goal is to generalize the approach of Chui and Shi to the matrix oversampling setting for expanding, lattice-preserving dilations, whereby we obtain a new proof of the Second Oversampling Theorem for affine frames. The Second Oversampling Theorem, proven originally by Ron and Shen vi...

متن کامل

Stability of Wavelet Frames with Matrix Dilations

Under certain assumptions we show that a wavelet frame {τ(Aj , bj,k)ψ}j,k∈Z := {|detAj |−1/2ψ(A−1 j (x− bj,k))}j,k∈Z in L2(Rd) remains a frame when the dilation matrices Aj and the translation parameters bj,k are perturbed. As a special case of our result, we obtain that if {τ(Aj , ABn)ψ}j∈Z,n∈Zd is a frame for an expansive matrix A and an invertible matrix B, then {τ(Aj , ABλn)ψ}j∈Z,n∈Zd is a ...

متن کامل

Completeness of Orthonormal Wavelet Systems, for Arbitrary Real Dilations

It is shown that the discrete Calderón condition characterizes completeness of orthonormal wavelet systems, for arbitrary real dilations. That is, if a > 1, b > 0, and the system Ψ = {aψ(ax − bk) : j, k ∈ Z} is orthonormal in L(R), then Ψ is a basis for L(R) if and only if ∑ j∈Z |ψ̂(aξ)| = b for almost every ξ ∈ R. A new proof of the Second Oversampling Theorem is found, by similar methods.

متن کامل

The wavelet dimension function for real dilations and dilations admitting non-MSF wavelets

The wavelet dimension function for arbitrary real dilations is defined and used to address several questions involving the existence of MRA wavelets and well-localized wavelets for irrational dilations. The theory of quasi-affine frames for rational dilations and the existence of non-MSF wavelets for certain irrational dilations play an important role in this development. Expansive dilations ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2012

ISSN: 0024-6107

DOI: 10.1112/jlms/jdr067